Design the 5 sections of a 6-stud starter for a 3-phase slip-ring induction motor The full-load slip is 2% and the maximum starting current is limited to twice the full-load current. Rotor resistance per phase is 0.03 Ω. (AMIE Winter 2023) Solution Full load slip = 2% Slip at 2 times full load current = 2 x 2 = 4% = 0.04 \(\alpha = {(0.04)^{1/n}} = {0.04^{1/5}} = 0.76\) \({R_1} = \frac{{0.02}}{{0.04}} = 0.5\) Resistances of the sections are \(\begin{array}{l}{r_1} = (1 - \alpha ){R_1} = (1 - 0.76)(0.5) = 0.12\\{r_2} = \alpha {r_1} = 0.76x0.12 = 0.0912\\{r_3} = {\alpha ^2}{r_1} = {(0.76)^2}(0.12) = 0.693\\{r_4} = {\alpha ^3}{r_1}\\{r_5} = {\alpha ^4}{r_1}\end{array}\) In a transformer, the core loss is found to be 52 W at 40 Hz and 90 W at 60 Hz measured at same peak flux density. Compute the hysteresis and eddy current losses at 50 Hz. (AMIE Winter 2023). Solution \(\begin{array}{l}{W_i} = Af + B{f^2}\\\frac{{{W_i}}}{f} = A + Bf\\\frac{{52}}{{40}} = A + 40B\\and\\\frac{{90}}{{60}...
AMIE Study Circle Blog
A blog for AMIE/BTech aspirants.