Flood-frequency computations for the river Chambal at Gandhisagar dam, by using Gumbels method, yielded the following results: Return period T (years) Peak flood (m 3 /s) 50 40,809 100 46,300 Estimate the flood magnitude in this river with a return period of 500 years. (AMIE Summer 2021) Solution Using Gumbel's equation \({x_T} = \bar x + K{\sigma _{n - 1}}\) \(\begin{array}{l}{x_{100}} = \bar x + {K_{100}}{\sigma _{n - 1}}\\{x_{50}} = \bar x + {K_{50}}{\sigma _{n - 1}}\\({K_{100}} - {K_{50}}){\sigma _{n - 1}} = {x_{100}}{x_{50}}\\ = \,46300 - 40809 = 5491\end{array}\) But, \(\begin{array}{l}{K_T} = \frac{{{y_T}}}{{{S_n}}} - \frac{{{{\bar y}_n}}}{{{S_n}}}\\{\rm{where }}{{\rm{S}}_n}\,and\,{{\bar y}_n}\,{\rm{are constants}}{\rm{.}}\end{array}\) \(\begin{array}{l}\therefore \,({y_{100}} - {y_{50}})\frac{{{\sigma _{n - 1}}}}{{{S_n}}} = 5491\\{\rm{Using equation}}\\{{\rm{y}}_T} = - \left[ {\ln .\ln \...
AMIE Exams, BTech for Working Professionals, SSC-JE, GATE, PSU, ESE, Manager Certificate (Mining), Boiler Operation Engineer Exams