Skip to main content

Strength of Materials (Stresses and Strains)

Q.1.      A bar of diameter 30 mm is subjected to a tensile load such that the measured extension on a gauge length of 200 mm is 0.09 mm and the change in diameter is 0.0045 mm. The Poisson’s ratio will be
            (a)  1/4
            (b)  1/3
            (c)  1/4.5
            (d)  1/2                            (IES 1995)

Q.2.     A steel cube of volume 8000 cc is subjected to all round stress of 1330 kg/sq.cm. The volumetric change is

            (a)  8 cc
            (b)  6 cc
            (c)  0.8 cc
            (d)  0.01 cc                     (IES 1995)

Q.3.      A steel tube is surrounding a solid aluminium cylinder. A force P is applied at the assembly. The aluminium cylinder is 75 mm in diameter and outside diameter of the steel tube is 90 mm. Given Esteel = 200 GNm-2 and Ealuminium =25 GNm-2 If P = 200 kN, the stress in steel tube will be
            (a)  10 MPa
            (b)  60.75 MPa
            (c)  80.25 MPa
            (d)  100 MPa

Q.4.      In the above problem, stress in aluminium will be
             (a)  10 Mpa
             (b)  60.75 MPa
             (c)  80.25 MPa
             (d)  100 MPa

Q.5.      A bar of length L is fitted between two supports and the temperature is increased t0. If support does not yield, the temperature stress in the bar will be
            (a)  0
            (b)  tE
            (c)  at
            (d)  atE

Q.6.      The length, coefficient of thermal expansion and Young’s modulus of bar A are twice that of bar B. If the temperature of both bars is increased by the same amount while preventing any expansion, then the ratio of stress developed in bar A to that in bar B will be
            (a)  2
            (b)  4
            (c)  8
            (d)  16                             (IES 1996)

Q.7.      A steel bar, 300 mm long and 24 mm diameter, is turned down to 18 mm diameter for one third of its length. It is heated 300C above room temperature, clamped at both ends and then allowed to cool to room temperature. If the distance between the clamped is unchanged, the maximum stress in the bar(a = 12.5 x 10-6 per 0C and E = 200 GN/m2) is
            (a)  25 MN/m2
            (b)  50 MN/m2
            (c)  75 MN/m2
            (d)  100 MN/m2            (IES 2000)

Q.8.      A railway track is laid so that there is no stress in the rails at 100C. If there is no allowance for expansion then stress in the rails at 600 C will be
            (a)  53.3 N/mm2
            (b)  110.7 N/mm2
            (c)  115 N/mm2
            (d)  120 N/mm2

Q.9.      In the above problem if there is an expansion allowance of 10 mm per rail then stress in the rails at 600 will be
            (a)  53.3 N/mm2
            (b)  110.7 N/mm2
            (c)  115 N/mm2
            (d)  120 N/mm2

Q.10.      In the above problem what will be expansion allowance if stress induced is zero
             (a)  1 mm
             (b)  7 mm
             (c)  11 mm
             (d)  18 mm


Answers:

1. b
2. a
3. c
4. a
5. d
6. b
7. d
8. d
9. a
10. d

Comments

Popular posts from this blog

Mechanics of Fluids (Solved Numerical Problems)

Numerical The surface Tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm² greater than the outside pressure. Calculate the diameter of the droplet of water. (7 marks) (AMIE Summer 2023) Solution Surface tension, σ = 0.0725 N/m Pressure intensity, P = 0.02 N/m 2 P = 4σ/d Hence, the Diameter of the dropd = 4 x 0.0725/200 = 1.45 mm Numerical Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is 2.5 N/m² above atmospheric pressure. (7 marks) (AMIE Summer 2023) Answer: 0.0125 N/m Numerical The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm² (atmospheric pressure). Calculate the pressure within the droplet if surface tension is given as 0.0725 N/m of water. (AMIE Summer 2023, 7 marks) Answer: 0.725 N/cm 2   Numerical An open lank contains water up to a depth of 2 m and above it an oil of specific gravity 0.9 for a depth of 1 m. Find the pressure intensity (i) at t...

Energy Systems (Solved Numerical Problems)

Wind at 1 standard atmospheric pressure and \({15^0}C\) has velocity of 15 m/s, calculate (i) the total power density in the wind stream (ii) the maximum obtainable power density (iii) a reasonably obtainable power density (iv) total power (v) torque and axial thrust Given: turbine diameter = 120 m, and turbine operating speed = 40 rpm at maximum efficiency. Propeller type wind turbine is considered. (AMIE Winter 2023) Solution For air, the value of gas constant is R = 0.287 kJ/kg.K 1 atm = 1.01325 x 105 Pa Air density \(\rho  = \frac{P}{{RT}} = \frac{{1.01325x{{10}^5}}}{{287}}(288) = 1.226\,kg/{m^3}\) Total Power \({P_{total}} = \rho A{V_1}^3/2\) Power density \(\begin{array}{l}\frac{{{P_{total}}}}{A} = \frac{1}{2}\rho {V_1}^3\\ = \frac{1}{2}(1.226){(15)^3}\\ = 2068.87{\mkern 1mu} W/{m^2}\end{array}\) Maximum power density \(\begin{array}{l}\frac{{{P_{\max }}}}{A} = \frac{8}{{27}}\rho A{V^3}_1\\ = \frac{8}{{27}}(1.226){(15)^3}\\ = 1226{\mkern 1mu} W/{m^2}\end{array}\) Assuming eff...

Design of Electrical Systems (Solved Numerical Problems)

Important note There is something wrong with this question paper. It seems that instead of "Design of Electrical Systems" the IEI has given problems from "Electrical Machines". You should raise a complaint to director_eea@ieindia.org in this regard. Numerical A 120 V DC shunt motor draws a current of 200A. The armature resistance is 0.02 ohms and the shunt field resistance is 30 ohms. Find back emf. If the lap wound armature has 90 slots with 4 conductors per slots, at what speed will the motor run when flux per pole is 0.04 Wb?​ (AMIE Summer 2023, 8 marks) Solution The back EMF (E b ) of a DC motor can be calculated using the formula: E b = V - I a R a   Given: V = 120 V I a = 200 A R a = 0.02 ohms Substituting the values into the formula: E b = 120 − 200 × 0.02 = 120 − 4​ = 116 V Now, let's calculate the speed (N) at which the motor will run using the given flux per pole (φ p ). The formula to calculate the speed of a DC motor is: N = 60×E b /(P×φ p ) Wh...