Skip to main content

Society & Environment - Questions from AMIE Exams

Match the books with authors. 

Books

  1. A God of small things
  2. Wealth of Nations
  3. Das Kapital
  4. A China passage
  5. Origin of Species
  6. A passage to England
  7. Wake up India
  8. The wonder that was India
  9. Mother
  10. Broken Wings

Authors

  1. J K Galbraith
  2. Annie Besant
  3. Maxim Gorky
  4. Arundhati Rai
  5. Charles Darwin
  6. Nirad C Chaudhari
  7. Adam Smith
  8. Kahlil Gibran
  9. Karl Marx
  10. Bhasham

Answers

  • A God of small things - Arundhati Rai
  • Wealth of Nations - Adam Smith
  • Das Kapital - Karl Marx
  • A China passage - J K Garlbrath
  • Origin of Species - Charles Darwin
  • A passage to England - Nirad C Chaudhari
  • Wake up India Annie Besant
  • The wonder that was India - Bhasham
  • Mother - Maxim Gorky
  • Broken Wings - Kahlil Gibran

---

 
The study material for AMIE/B Tech/Junior Engineer exams is available at https://amiestudycircle.com

Comments

Popular posts from this blog

Energy Systems (Solved Numerical Problems)

Wind at 1 standard atmospheric pressure and \({15^0}C\) has velocity of 15 m/s, calculate (i) the total power density in the wind stream (ii) the maximum obtainable power density (iii) a reasonably obtainable power density (iv) total power (v) torque and axial thrust Given: turbine diameter = 120 m, and turbine operating speed = 40 rpm at maximum efficiency. Propeller type wind turbine is considered. (AMIE Winter 2023) Solution For air, the value of gas constant is R = 0.287 kJ/kg.K 1 atm = 1.01325 x 105 Pa Air density \(\rho  = \frac{P}{{RT}} = \frac{{1.01325x{{10}^5}}}{{287}}(288) = 1.226\,kg/{m^3}\) Total Power \({P_{total}} = \rho A{V_1}^3/2\) Power density \(\begin{array}{l}\frac{{{P_{total}}}}{A} = \frac{1}{2}\rho {V_1}^3\\ = \frac{1}{2}(1.226){(15)^3}\\ = 2068.87{\mkern 1mu} W/{m^2}\end{array}\) Maximum power density \(\begin{array}{l}\frac{{{P_{\max }}}}{A} = \frac{8}{{27}}\rho A{V^3}_1\\ = \frac{8}{{27}}(1.226){(15)^3}\\ = 1226{\mkern 1mu} W/{m^2}\end{array}\) Assuming eff...

Mechanics of Fluids (Solved Numerical Problems)

Numerical The surface Tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm² greater than the outside pressure. Calculate the diameter of the droplet of water. (7 marks) (AMIE Summer 2023) Solution Surface tension, σ = 0.0725 N/m Pressure intensity, P = 0.02 N/m 2 P = 4σ/d Hence, the Diameter of the dropd = 4 x 0.0725/200 = 1.45 mm Numerical Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is 2.5 N/m² above atmospheric pressure. (7 marks) (AMIE Summer 2023) Answer: 0.0125 N/m Numerical The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm² (atmospheric pressure). Calculate the pressure within the droplet if surface tension is given as 0.0725 N/m of water. (AMIE Summer 2023, 7 marks) Answer: 0.725 N/cm 2   Numerical An open lank contains water up to a depth of 2 m and above it an oil of specific gravity 0.9 for a depth of 1 m. Find the pressure intensity (i) at t...

Geotechnical & Foundation Engineering (Solved Numerical Problems)

Numerical A 1000 cc core cutter weighing 946.80 g was used to find out the in-situ unit weight of an embankment. The weight of the core cutter filled with soil was noted to be 2770.60 g. Laboratory tests on the sample indicated a water content of 10.45 % and specific gravity of solids of 2.65. Determine the bulk unit weight, dry unit weight, void ratio, and degree of saturation of the sample. (AMIE Summer 2023, 8 marks) Solution Weight of soil in core cutter = 2770.60 - 946.80 = 1823.8 g Bulk unit weight, γ t = W/V = 1823.8/1000 = 1.82 g/ccDry unit weight, γ d = γ t /(1 + w) = 1.82/(1 + 0.1045) = 1.65 g/cc Void ratio, e = (G s γ w /γ d ) - 1 = (2.65 x 1.0/1.65) - 1 = 0.61 Degree of saturation, S = wG s /e = (0.1045 x 2.65)/0.61 = 0.4540 = 45.4% Numerical What is the theoretical height of the capillary rise and the capillary pressure in fine-grained soil with an effective size (D 10 ) of 0.002 mm? (AMIE Summer 2023, 4 marks) Solution D 10 = 0.002 mm;  Using the assumption that th...