Skip to main content

Design of Machine Elements - short answer questions from AMIE exams (Summer 2020)

Answer any four.

Clutches

A clutch is a machine member used to connect a driving shaft to a driven shaft so that the driven shaft may be started or stopped at will, without stopping the driving shaft. The use of a clutch is mostly found in automobiles. 

In order to change gears or to stop the vehicle, it is required that the driven shaft should stop, but the engine should continue to run. It is, therefore, necessary that the driven shaft should be disengaged from the driving shaft. The engagement and disengagement of the shafts are obtained by means of a clutch which is operated by a lever.

Following are the two main types of clutches commonly used in engineering practice:
Square jaw clutch

Spiral jaw clutch
Friction clutches
A friction clutch has its principal application in the transmission of the power of shafts and machines which must be started and stopped frequently. Its application is also found in cases in which power is to be delivered to machines partially or fully loaded. The force of friction is used to start the driven shaft from rest and gradually brings it up to the proper speed without excessive slipping of the friction surfaces. In automobiles, a friction clutch is used to connect the engine to the drive shaft.

Positive clutches
The positive clutches are used when a positive drive is required. The simplest type of positive clutch is a jaw or claw clutch. The jaw clutch permits one shaft to drive another through a direct contact of interlocking jaws. It consists of two halves, one of which is permanently fastened to the driving shaft by a sunk key. The other half of the clutch is movable and it is free to slide axially on the driven shaft, but it is prevented from turning relatively to its shaft by means of a feather key.

Types of welded joints 

Welded joints are divided into two groups—butt joints and fillet joints

A butt joint can be defined as a joint between two components lying approximately in the same plane. A butt joint connects the ends of the two plates. 
Butt joint
A fillet joint, also called a lap joint, is a joint between two overlapping plates or components. A fillet weld consists of an approximately triangular cross-section joining two surfaces at right angles to each other. There are two types of fillet joints— transverse and parallel.

Fillet joints

Shot peening 

In a large number of applications, the external force acting on the spring fluctuates with respect to time resulting in fatigue failure. Due to the poor surface finish of the spring wire, the fatigue crack usually begins with some surface irregularity and propagates due to tensile stresses. It has been observed that the propagation of fatigue crack is always due to tensile stresses. 

In order to reduce the chances of crack propagation, a layer of residual compressive stress is induced on the surface of the spring wire. One of the methods of creating such a layer is shot peening. In this process, small steel balls arc impinged on the wire surface with high velocities cither by an air blast or by centrifugal action. The balls strike against the wire surface and induce residual compressive stresses.

Power transmission elements 

Types of Mechanical power transmission elements are

  • Shafts & Couplings
  • Power screws
  • Gears & Gear trains
  • Brakes & Clutches
  • Belts, Ropes & Pulleys
  • Chains & sprockets
  • Difference between thick and thin cylinders.
See full details about these elements in our study material available at https://amiestudycircle.com 

Mild steel curves for steel

The stress-strain curve for mild steel consists of strain along the x-axis and stress along the y-axis. The stress-strain curve for mild steel consists of various stages such as

  • Proportional Limit:  When we applied load on mild steel first point we observe Point A which is called proportionality limit because stress and strain are proportional to the applied load and it follows hook’s law and this line will be straight.
  • Elastic Limit:  Limiting value of stress up to which a material behaves like a perfectly elastic called elastic limit. In the figure, point B is the elastic limit point. After removal of the load material can regain its original shape if does not cross point B.
  • Yield Strength:  Yield strength is a phase in the curve in which extension takes place more even application of small load or negligible load. CD curve shows yield strength of mild steel.
  • Ultimate Strength:  Ultimate strength is the maximums strength of a material that can bear without fracture. Stress on this point is called ultimate stress. Point E is the point of ultimate strength. After point E material can break suddenly even application of small load.  
  • Fracture Point:  Point F is the fracture point in the curve. The fracture point is a point where the strength of material breaks and the strength of this point is called rupture strength.

Difference between thick and thin cylinders

Thin Cylinder
  • The cylinder whose thickness of the wall is less than 1/10 to 1/15 of its own diameter is called a thin cylinder.
  • It may be noted that whenever a cylinder is subjected to an internal pressure its wall are subjected to circumferential stress or hoop stress and longitudinal stress.
  • In the case of the thin cylinder, the stresses are assumed to be uniformly distributed throughout the wall thickness.
Thick Cylinder
  • The cylinder thickness of wall is greater than 1/10 to 1/15 of its own diameter is known as a thick cylinder.
  • The thick cylinder are generally used to withstand high pressure. Sometimes even compound thick cylinder are used to with stand very high pressure or to contain chemicals under high pressure.
  • The problem of a thick cylinder is somewhat complex and is solved by using Lame's theory.
---
The study material for AMIE/B Tech/Junior Engineer exams is available at https://amiestudycircle.com

Comments

Bean Bag coffee said…
I have found a nice article by your post which you have shared here. It is some helpful to me for Chemical Engineering Books. I like your hard work. Keep it up.

Popular posts from this blog

Mechanics of Fluids (Solved Numerical Problems)

Numerical The surface Tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm² greater than the outside pressure. Calculate the diameter of the droplet of water. (7 marks) (AMIE Summer 2023) Solution Surface tension, σ = 0.0725 N/m Pressure intensity, P = 0.02 N/m 2 P = 4σ/d Hence, the Diameter of the dropd = 4 x 0.0725/200 = 1.45 mm Numerical Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is 2.5 N/m² above atmospheric pressure. (7 marks) (AMIE Summer 2023) Answer: 0.0125 N/m Numerical The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm² (atmospheric pressure). Calculate the pressure within the droplet if surface tension is given as 0.0725 N/m of water. (AMIE Summer 2023, 7 marks) Answer: 0.725 N/cm 2   Numerical An open lank contains water up to a depth of 2 m and above it an oil of specific gravity 0.9 for a depth of 1 m. Find the pressure intensity (i) at t...

Energy Systems (Solved Numerical Problems)

Wind at 1 standard atmospheric pressure and \({15^0}C\) has velocity of 15 m/s, calculate (i) the total power density in the wind stream (ii) the maximum obtainable power density (iii) a reasonably obtainable power density (iv) total power (v) torque and axial thrust Given: turbine diameter = 120 m, and turbine operating speed = 40 rpm at maximum efficiency. Propeller type wind turbine is considered. (AMIE Winter 2023) Solution For air, the value of gas constant is R = 0.287 kJ/kg.K 1 atm = 1.01325 x 105 Pa Air density \(\rho  = \frac{P}{{RT}} = \frac{{1.01325x{{10}^5}}}{{287}}(288) = 1.226\,kg/{m^3}\) Total Power \({P_{total}} = \rho A{V_1}^3/2\) Power density \(\begin{array}{l}\frac{{{P_{total}}}}{A} = \frac{1}{2}\rho {V_1}^3\\ = \frac{1}{2}(1.226){(15)^3}\\ = 2068.87{\mkern 1mu} W/{m^2}\end{array}\) Maximum power density \(\begin{array}{l}\frac{{{P_{\max }}}}{A} = \frac{8}{{27}}\rho A{V^3}_1\\ = \frac{8}{{27}}(1.226){(15)^3}\\ = 1226{\mkern 1mu} W/{m^2}\end{array}\) Assuming eff...

Design of Electrical Systems (Solved Numerical Problems)

Important note There is something wrong with this question paper. It seems that instead of "Design of Electrical Systems" the IEI has given problems from "Electrical Machines". You should raise a complaint to director_eea@ieindia.org in this regard. Numerical A 120 V DC shunt motor draws a current of 200A. The armature resistance is 0.02 ohms and the shunt field resistance is 30 ohms. Find back emf. If the lap wound armature has 90 slots with 4 conductors per slots, at what speed will the motor run when flux per pole is 0.04 Wb?​ (AMIE Summer 2023, 8 marks) Solution The back EMF (E b ) of a DC motor can be calculated using the formula: E b = V - I a R a   Given: V = 120 V I a = 200 A R a = 0.02 ohms Substituting the values into the formula: E b = 120 − 200 × 0.02 = 120 − 4​ = 116 V Now, let's calculate the speed (N) at which the motor will run using the given flux per pole (φ p ). The formula to calculate the speed of a DC motor is: N = 60×E b /(P×φ p ) Wh...