Skip to main content

Communication Engineering - MCQs from AMIE exams (Winter 2020)

Choose the correct option (10 x 2)

1. The laplace equation has
(a) Two solutions
(b) Infinite solutions
(c) No solutions
(d) One solution

2. A material has conductivity of 10⁻² mho/in and a relative permittivity of 4. The frequency at which conduction current is equal to displacement current is
(a) 45 MHz
(b) 90 MHz
(c) 450 MHz
(d) 900 MHz

3. The magnetic field in an ideal conductor is
(a) Zero
(b) Infinite
(c) Finite
(d) Same as outside field

4. Statement 1 - Inside a conductor electric field is always zero.
Statement 2 - A conductor is always an equipotential surface.
(a) True, True
(b) False, False
(c) False, True
(d) True, False

5. An integration of any vector around a closed path is always equal to the Curl of surface integral of that vector, this statement is known as :
(a) Ampere law
(b) Stoke's theorem
(c) Biot Savart law
(d) Curl

6. The probability density function of the envelope of narrowband Gaussian noise is
(a) Poisson
(b) Gaussian
(c) Rayleigh
(d) Rician

7. Quantization noise is produced in
(a) All pulse modulation system
(b) PCM
(c) FM
(d) AM

8. Granular noise is associated with
(a) PCM
(b) DPCM
(c) DM
(d) QAM

9. A TDM link has 20 signal channels and each channel is sampled 8000 times/sec. Each sample is represented by 7 binary bits and contains an additional bit for synchronization. The total bit rate for the TDM link is
(a) 180 kbps 
(b) 1280 kbps 
(c) 1180 Mbps
(d) 1880 Mbps

10. Four voice signals, each limited to 4 kHz and sampled at Nyquist rate, are converted into binary PCM signals using 256 quantization levels. The bit transmission rate for the time-division multiplexed signal will be
(a) 64 bps
(b) 16 kbps
(c) 32 kbps
(d) 256 kbps

Answers


1. (d)

2. (a)
\omega  = 2\pi f = \frac{\sigma }{{{\varepsilon _0}{\varepsilon _r}}}
\Rightarrow f = \frac{\sigma }{{2\pi {\varepsilon _0}{\varepsilon _r}}} = \frac{{{{10}^{ - 2}}}}{{2\pi (8.85x{{10}^{ - 12}})(4)}} = 45MHz

3. (a) We know that magnetic field intensity B is directly proportional to the electric current in that wire, as we go inside the wire the current density J(=I/A) decrease so at the center it becomes zero.

4. (a) 
  • On the surface of a perfect conductor, the potential distributed evenly over the surface. I.e. an equipotential surface. So Statement A follows.
  • The electric field inside a charged spherical conductor is always zero. The charges in a perfect conductor reside only on the surface of the conductor. So, the charge inside the conductor is zero.
5. (b) 
This theorem states that the line integral of a vector around a closed path is equal to the surface integral of the normal component of its curl over the surface bounded by the path.
Mathematically, 
where S is the surface enclosed by the path L.

6. (b) 

7. (b) In pulse modulation, pulses result from sampling the modulating signal wave. In other words, the modulating wave is sliced into small units, the process is called quantizing or quantization. These quantum points are then converted into digital binary codes, which represents amplitude of the wave at that point.


8. (c) If the step size is made arbitrarily large to avoid slope-overload distortion, it may lead to ‘granular noise’. Imagine that the input speech signal is fluctuating but very close to zero over a limited time duration. This may happen due to pauses between sentences or else. During such moments, our delta modulator is likely to produce a fairly long sequence of 101010…., reflecting that the accumulator output is close but alternating around the input signal. This phenomenon is manifested at the output of the delta demodulator as a small but perceptible noisy background. This is known as ‘granular noise’. An expert listener can recognize the crackling sound.

9. (b) Time-division multiplexing is a type of digital multiplexing in which two or more signals are
transferred apparently simultaneously as subchannels in one communication channel, but are physically taking turns on the channel.

Given sampling rate of channel each = 8000 Hz = fch
Since 24 such signals are Multiplexed, we get a total pulse per second (frequency) of the multiplied signal as:
fs = nfch
Putting on the respective values:
fs = 20 × 8000 = 160,000 = 160 KHz
Now each sample is represented by 7 bits and contains an additional bit for synchronization.
The total number of bits per sample will be:
n = 7 + 1 = 8 bits
∴ The total bit rate of the TDM link will be:
Rb = nfs = 8 × 160 Kbps = 1280 Kilo-bits/sec

10. (d) 
Since the sampling frequency is not mentioned, we'll assume it to be sampled at the Nyquist rate, i.e.
fs = 2fm
fm = Maximum frequency present at the modulating signal.
∴ For the given band-limited signal with a frequency of 4 kHz, the sampling frequency will be:
fs = 2 × 4 = 8 kHz
With L = 256, the number of bits will be:
n = log2 256 = log2 28
n = 8 bits
Now for 4 Voice signals
Rb = 4 × n × fs = 4 × 8 × 8000 = 256 kbps

---
  • The study material for AMIE/B Tech/Junior Engineer exams is available at https://amiestudycircle.com
  • If you like the post please share your thoughts in the comment section 


Comments

Popular posts from this blog

Mechanics of Fluids (Solved Numerical Problems)

Numerical The surface Tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm² greater than the outside pressure. Calculate the diameter of the droplet of water. (7 marks) (AMIE Summer 2023) Solution Surface tension, σ = 0.0725 N/m Pressure intensity, P = 0.02 N/m 2 P = 4σ/d Hence, the Diameter of the dropd = 4 x 0.0725/200 = 1.45 mm Numerical Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is 2.5 N/m² above atmospheric pressure. (7 marks) (AMIE Summer 2023) Answer: 0.0125 N/m Numerical The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm² (atmospheric pressure). Calculate the pressure within the droplet if surface tension is given as 0.0725 N/m of water. (AMIE Summer 2023, 7 marks) Answer: 0.725 N/cm 2   Numerical An open lank contains water up to a depth of 2 m and above it an oil of specific gravity 0.9 for a depth of 1 m. Find the pressure intensity (i) at t...

Energy Systems (Solved Numerical Problems)

Wind at 1 standard atmospheric pressure and \({15^0}C\) has velocity of 15 m/s, calculate (i) the total power density in the wind stream (ii) the maximum obtainable power density (iii) a reasonably obtainable power density (iv) total power (v) torque and axial thrust Given: turbine diameter = 120 m, and turbine operating speed = 40 rpm at maximum efficiency. Propeller type wind turbine is considered. (AMIE Winter 2023) Solution For air, the value of gas constant is R = 0.287 kJ/kg.K 1 atm = 1.01325 x 105 Pa Air density \(\rho  = \frac{P}{{RT}} = \frac{{1.01325x{{10}^5}}}{{287}}(288) = 1.226\,kg/{m^3}\) Total Power \({P_{total}} = \rho A{V_1}^3/2\) Power density \(\begin{array}{l}\frac{{{P_{total}}}}{A} = \frac{1}{2}\rho {V_1}^3\\ = \frac{1}{2}(1.226){(15)^3}\\ = 2068.87{\mkern 1mu} W/{m^2}\end{array}\) Maximum power density \(\begin{array}{l}\frac{{{P_{\max }}}}{A} = \frac{8}{{27}}\rho A{V^3}_1\\ = \frac{8}{{27}}(1.226){(15)^3}\\ = 1226{\mkern 1mu} W/{m^2}\end{array}\) Assuming eff...

Design of Electrical Systems (Solved Numerical Problems)

Important note There is something wrong with this question paper. It seems that instead of "Design of Electrical Systems" the IEI has given problems from "Electrical Machines". You should raise a complaint to director_eea@ieindia.org in this regard. Numerical A 120 V DC shunt motor draws a current of 200A. The armature resistance is 0.02 ohms and the shunt field resistance is 30 ohms. Find back emf. If the lap wound armature has 90 slots with 4 conductors per slots, at what speed will the motor run when flux per pole is 0.04 Wb?​ (AMIE Summer 2023, 8 marks) Solution The back EMF (E b ) of a DC motor can be calculated using the formula: E b = V - I a R a   Given: V = 120 V I a = 200 A R a = 0.02 ohms Substituting the values into the formula: E b = 120 − 200 × 0.02 = 120 − 4​ = 116 V Now, let's calculate the speed (N) at which the motor will run using the given flux per pole (φ p ). The formula to calculate the speed of a DC motor is: N = 60×E b /(P×φ p ) Wh...