Skip to main content

Power System Performance - Short answer questions from AMIE Exams (Winter 2022)

Answer the following in brief (2 marks each):

Differentiate between a protective relay and a fuse.

Relay switches current flow on and off when energized/de energized. A fuse lets current flow until it reaches a pre designed limit.

What is restructure power system?

Power restructuring, a systematic running of modifying the rules and instructions that control the power market to impart consumers for the option of power producing, those are may be traders and allowing rivalry within the traders. Deregulation improves the stock rate and usage.

What is Static frequency drop?

It is given as

Δf0 = -M/[D + (1/R)] Hz
where M = load increase
R = regulation
D = frequency dependency

List the various sources of reactive power.

Some of the static sources for the reactive power in the power system are:

  •     Shunt capacitors.
  •     Filter banks.
  •     Underground cables.
  •     Transmission lines when lightly loaded.
  •     Fuel cells.
  •     PV systems.

What do you understand by Sparsity?

A matrix is characterized as sparse, whenever a significant percentage of it's elements are equal to zero. The admittance or Y matrix of a power system is relatively sparse, whereas the Z of impedance matrix of the same system is proportionately full, i.e. very few zero elements.

Why bus admittance matrix is preferred in load flow?

Ybus is a Sparse Matrix that is most of elements are zero and hence less memory is required for storage.

Draw the single phase equivalent circuit of three winding transformer.


Where Impedance relays. Reactance relays and Mho relays ate employed?

The Impedance relay is suitable for the phase faults relaying for the lines of moderate lengths. Reactance type relays are employed for the ground faults while Mho type of relays are best suited for the long transmission lines and particularly where synchronizing power surge may occur.

How is generator in transient analysis represented?

What do you understand by dead spot?

The section of Power System which is not covered under any zone of protection is called Dead Zone or Blind Zone and special kind of protection shall be provided to take care of fault in Dead Zone.

---

The study material for AMIE/Junior Engineer exams is available at https://amiestudycircle.com

Comments

Popular posts from this blog

Mechanics of Fluids (Solved Numerical Problems)

Numerical The surface Tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm² greater than the outside pressure. Calculate the diameter of the droplet of water. (7 marks) (AMIE Summer 2023) Solution Surface tension, σ = 0.0725 N/m Pressure intensity, P = 0.02 N/m 2 P = 4σ/d Hence, the Diameter of the dropd = 4 x 0.0725/200 = 1.45 mm Numerical Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is 2.5 N/m² above atmospheric pressure. (7 marks) (AMIE Summer 2023) Answer: 0.0125 N/m Numerical The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm² (atmospheric pressure). Calculate the pressure within the droplet if surface tension is given as 0.0725 N/m of water. (AMIE Summer 2023, 7 marks) Answer: 0.725 N/cm 2   Numerical An open lank contains water up to a depth of 2 m and above it an oil of specific gravity 0.9 for a depth of 1 m. Find the pressure intensity (i) at t...

Energy Systems (Solved Numerical Problems)

Wind at 1 standard atmospheric pressure and \({15^0}C\) has velocity of 15 m/s, calculate (i) the total power density in the wind stream (ii) the maximum obtainable power density (iii) a reasonably obtainable power density (iv) total power (v) torque and axial thrust Given: turbine diameter = 120 m, and turbine operating speed = 40 rpm at maximum efficiency. Propeller type wind turbine is considered. (AMIE Winter 2023) Solution For air, the value of gas constant is R = 0.287 kJ/kg.K 1 atm = 1.01325 x 105 Pa Air density \(\rho  = \frac{P}{{RT}} = \frac{{1.01325x{{10}^5}}}{{287}}(288) = 1.226\,kg/{m^3}\) Total Power \({P_{total}} = \rho A{V_1}^3/2\) Power density \(\begin{array}{l}\frac{{{P_{total}}}}{A} = \frac{1}{2}\rho {V_1}^3\\ = \frac{1}{2}(1.226){(15)^3}\\ = 2068.87{\mkern 1mu} W/{m^2}\end{array}\) Maximum power density \(\begin{array}{l}\frac{{{P_{\max }}}}{A} = \frac{8}{{27}}\rho A{V^3}_1\\ = \frac{8}{{27}}(1.226){(15)^3}\\ = 1226{\mkern 1mu} W/{m^2}\end{array}\) Assuming eff...

Design of Electrical Systems (Solved Numerical Problems)

Important note There is something wrong with this question paper. It seems that instead of "Design of Electrical Systems" the IEI has given problems from "Electrical Machines". You should raise a complaint to director_eea@ieindia.org in this regard. Numerical A 120 V DC shunt motor draws a current of 200A. The armature resistance is 0.02 ohms and the shunt field resistance is 30 ohms. Find back emf. If the lap wound armature has 90 slots with 4 conductors per slots, at what speed will the motor run when flux per pole is 0.04 Wb?​ (AMIE Summer 2023, 8 marks) Solution The back EMF (E b ) of a DC motor can be calculated using the formula: E b = V - I a R a   Given: V = 120 V I a = 200 A R a = 0.02 ohms Substituting the values into the formula: E b = 120 − 200 × 0.02 = 120 − 4​ = 116 V Now, let's calculate the speed (N) at which the motor will run using the given flux per pole (φ p ). The formula to calculate the speed of a DC motor is: N = 60×E b /(P×φ p ) Wh...