Skip to main content

Engineering Management - true/false questions from AMIE exams

  1. The modern management information system must use computers. 
  2. Management needs to know where their information comes from.
  3. Authority means only the right to act.
  4. Functional types of organisations were first proposed by F.W. Taylor.
  5. The standard deviation of the critical path in a PERT network is not calculated by adding the standard deviations of all the critical activities. 
  6. The return to scale for a production process, in which doubling the input quantities yield more than double the quantity of output, is more than one. 
  7. The CPM models are valid for situations with limited resources availability.
  8. Top management activities include a lot of planning and little organization and directing. 
  9. Break-even analysis is a method that analyses the cost, volume and profit relationship. 
  10. The concept of division of labour was proposed by F.W. Taylor.
Answers
  1. True
  2. True
  3. False
  4. True. A functional organization is one in which work is organized on the basis of specialization. Thus, expert staff personnel pass instructions directly to line personnel without taking the route of for­mal command-chain. This form of organization was devised by F.W. Taylor, the father of Scientific Management.
  5. True. It is σ (Critical Path) = √([Var(1) + Var(2) + Var(3) ] where 1, 2 and 3 are activities. Var is variance.
  6. True
  7. False
  8. True
  9. True. The cost-volume-profit analysis, also commonly known as a break-even analysis. It determines the break-even point for different sales volumes and cost structures.
  10. False. The French scholar Émile Durkheim first used the phrase division of labour in a sociological sense in his discussion of social evolution.
---
The study material for AMIE/B Tech/Junior Engineer exams is available at https://amiestudycircle.com 

Comments

Popular posts from this blog

Mechanics of Fluids (Solved Numerical Problems)

Numerical The surface Tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm² greater than the outside pressure. Calculate the diameter of the droplet of water. (7 marks) (AMIE Summer 2023) Solution Surface tension, σ = 0.0725 N/m Pressure intensity, P = 0.02 N/m 2 P = 4σ/d Hence, the Diameter of the dropd = 4 x 0.0725/200 = 1.45 mm Numerical Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is 2.5 N/m² above atmospheric pressure. (7 marks) (AMIE Summer 2023) Answer: 0.0125 N/m Numerical The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm² (atmospheric pressure). Calculate the pressure within the droplet if surface tension is given as 0.0725 N/m of water. (AMIE Summer 2023, 7 marks) Answer: 0.725 N/cm 2   Numerical An open lank contains water up to a depth of 2 m and above it an oil of specific gravity 0.9 for a depth of 1 m. Find the pressure intensity (i) at t...

Energy Systems (Solved Numerical Problems)

Wind at 1 standard atmospheric pressure and \({15^0}C\) has velocity of 15 m/s, calculate (i) the total power density in the wind stream (ii) the maximum obtainable power density (iii) a reasonably obtainable power density (iv) total power (v) torque and axial thrust Given: turbine diameter = 120 m, and turbine operating speed = 40 rpm at maximum efficiency. Propeller type wind turbine is considered. (AMIE Winter 2023) Solution For air, the value of gas constant is R = 0.287 kJ/kg.K 1 atm = 1.01325 x 105 Pa Air density \(\rho  = \frac{P}{{RT}} = \frac{{1.01325x{{10}^5}}}{{287}}(288) = 1.226\,kg/{m^3}\) Total Power \({P_{total}} = \rho A{V_1}^3/2\) Power density \(\begin{array}{l}\frac{{{P_{total}}}}{A} = \frac{1}{2}\rho {V_1}^3\\ = \frac{1}{2}(1.226){(15)^3}\\ = 2068.87{\mkern 1mu} W/{m^2}\end{array}\) Maximum power density \(\begin{array}{l}\frac{{{P_{\max }}}}{A} = \frac{8}{{27}}\rho A{V^3}_1\\ = \frac{8}{{27}}(1.226){(15)^3}\\ = 1226{\mkern 1mu} W/{m^2}\end{array}\) Assuming eff...

Design of Electrical Systems (Solved Numerical Problems)

Important note There is something wrong with this question paper. It seems that instead of "Design of Electrical Systems" the IEI has given problems from "Electrical Machines". You should raise a complaint to director_eea@ieindia.org in this regard. Numerical A 120 V DC shunt motor draws a current of 200A. The armature resistance is 0.02 ohms and the shunt field resistance is 30 ohms. Find back emf. If the lap wound armature has 90 slots with 4 conductors per slots, at what speed will the motor run when flux per pole is 0.04 Wb?​ (AMIE Summer 2023, 8 marks) Solution The back EMF (E b ) of a DC motor can be calculated using the formula: E b = V - I a R a   Given: V = 120 V I a = 200 A R a = 0.02 ohms Substituting the values into the formula: E b = 120 − 200 × 0.02 = 120 − 4​ = 116 V Now, let's calculate the speed (N) at which the motor will run using the given flux per pole (φ p ). The formula to calculate the speed of a DC motor is: N = 60×E b /(P×φ p ) Wh...